- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Grondin, Steffani M (2)
-
Chornock, Ryan (1)
-
Drout, Maria R (1)
-
Fragione, Giacomo (1)
-
Heinke, Craig O (1)
-
Leigh, Nathan_W C (1)
-
Muirhead, Philip S (1)
-
Nordhaus, Jason (1)
-
Speagle_沈, Joshua_S 佳士 (1)
-
Webb, Jeremy J (1)
-
Ye, Claire S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& *Soto, E. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Close binary systems are the progenitors to both Type Ia supernovae and the compact object mergers that can be detected via gravitational waves. To achieve a binary with a small radial separation, it is believed that the system likely undergoes common envelope (CE) evolution. Despite its importance, CE evolution may be one of the largest uncertainties in binary evolution due to a combination of computational challenges and a lack of observed benchmarks where both the post-CE and pre-CE conditions are known. Identifying post-CE systems in star clusters can partially circumvent this second issue by providing an independent age constraint on the system. For the first time, we conduct a systematic search for white dwarf and main-sequence binary systems in 299 Milky Way open star clusters. Coupling Gaia DR3 photometry and kinematics with multiband photometry from Pan-STARRS1 and the Two Micron All Sky Survey, we apply a machine learning-based approach and find 52 high-probability candidates in 38 open clusters. For a subset of our systems, we present follow-up spectroscopy from the Gemini and Lick Observatories and archival light curves from the Transiting Exoplanet Survey Satellite, Kepler/K2, and the Zwicky Transient Facility. Examples of M dwarfs with hot companions are spectroscopically observed, along with regular system variability. While the kinematics of our candidates are consistent with their host clusters, some systems have spatial positions offset relative to their hosts, potentially indicative of natal kicks. Ultimately, this catalog is a first step to obtaining a set of observational benchmarks to better link post-CE systems to their pre-CE progenitors.more » « less
-
Leigh, Nathan_W C; Ye, Claire S; Grondin, Steffani M; Fragione, Giacomo; Webb, Jeremy J; Heinke, Craig O (, Monthly Notices of the Royal Astronomical Society)ABSTRACT It has been argued that heavy binaries composed of neutron stars (NSs) and millisecond pulsars (MSPs) can end up in the outskirts of star clusters via an interaction with a massive black hole (BH) binary expelling them from the core. We argue here, however, that this mechanism will rarely account for such observed objects. Only for primary masses ≲100 M⊙ and a narrow range of orbital separations should a BH–BH binary be both dynamically hard and produce a sufficiently low recoil velocity to retain the NS binary in the cluster. Hence, BH binaries are in general likely to eject NSs from clusters. We explore several alternative mechanisms that would cause NS/MSP binaries to be observed in the outskirts of their host clusters after a Hubble time. The most likely mechanism is a three-body interaction involving the NS/MSP binary and a normal star. We compare to Monte Carlo simulations of cluster evolution for the globular clusters NGC 6752 and 47 Tuc, and show that the models not only confirm that normal three-body interactions involving all stellar-mass objects are the dominant mechanism for putting NS/MSP binaries into the cluster outskirts, but also reproduce the observed NS/MSP binary radial distributions without needing to invoke the presence of a massive BH binary. Higher central densities and an episode of core collapse can broaden the radial distributions of NSs/MSPs and NS/MSP binaries due to three-body interactions, making these clusters more likely to host NSs in the cluster outskirts.more » « less
An official website of the United States government
